ROSATOM OVERSEAS INC

Benefits of the Integrated Solution for Construction and Operation of Research Reactors and Centers of Nuclear Science and Technologies

DMITRI VYSOTSKI

Director of Nuclear Research Reactors

May 31, 2016

ATOMEXPO 2016

Roundtable "Creation of Nuclear

Science and Technologies Centers.

Science and Business Applications"

RESEARCH REACTOR ADVANTAGES

WHY GO INTO NUCLEAR RESEARCH?

To host **ground-breaking experiments**, improve overall scientific knowledge and serve as **training centres** for students and nuclear scientists of the future

To solve developmental challenges in health care, agriculture and industry.

To foster **national**, **regional** and **international** technology exchange and innovation.

To **improve the national economy** through application of the advanced nuclear technologies

To develop the skills & expertise for **industrial nuclear energy use**

To **upgrade the public image** of the country on the regional and international scale

ROSATOM: CORPORATION OF KNOWLEDGE

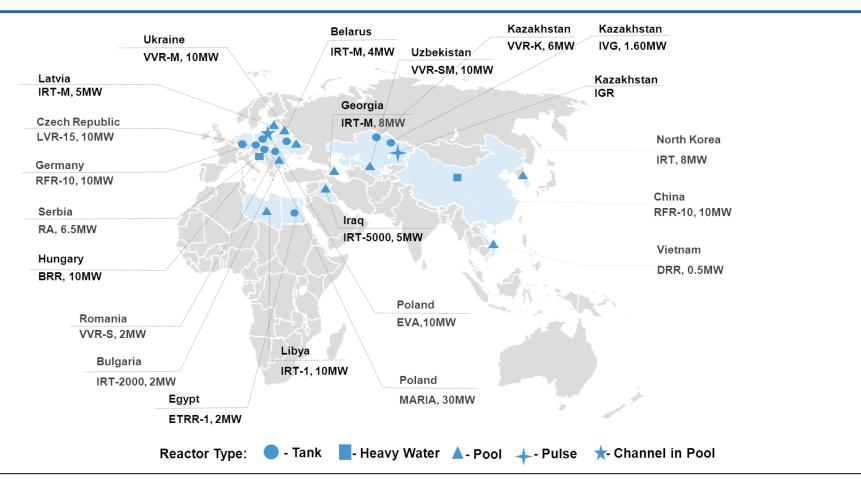
WHY GO WITH ROSATOM INTO RESEARCH REACTORS?

For over **50** years, research reactors have been fostering scientific innovation and education in more than **50** countries worldwide

There are 245 research reactors in operation worldwide

Rosatom has built 120 research reactors in Russia & abroad

Over 50 research facilities are in operation in Russia


In-house capabilities to develop and supply research and training labs

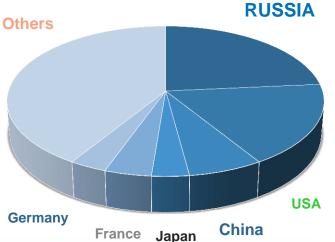
Broad on-the-job **training facilities** at research and commercial research reactors

20 000 employees in Rosatom enterprises and R&D institutions are supporting Rosatom scientific and research platform and cooperation with partner-countries

RUSSIAN RESEARCH REACTORS OVERSEAS

- Over 100 research reactors were built in Russia, 52 of them are still being operated –
 about 20% of the world number of RR
- More than 20 research reactors were built abroad in cooperation with Russia and on the basis of Russian designs. The majority of these reactors is in operation

RESEARCH REACTORS IN RUSSIA (ROSATOM/TOTAL)


Name	Operating	Safe Enclosure	Under Construction	Total
Research Reactors (steady state and pulse)	19/28	1/1	2/3	22/32
Zero-Power Reactors (Critical Assemblies)	12/24	1/1	0	13/25
	31/52	2/2	2/3	35/57

Seven from eight steady state operating reactors with power not less than 10 MW belong to ROSATOM

Different types, power, utilization...

Operating Research Reactors in the World

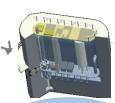
ROSATOM UNIQUE INTEGRATED SOLUTION FOR RESEARCH REACTORS AND CENTERS OF SCIENCE AND TECHNOLOGIES

Regulation, Infrastructure and Public acceptance

Creation and development of regulatory base

Spent nuclear fuel and radioactive waste management

Social-political programs support


Knowledge, skills, human capital

Personnel education & training (incl. onsite training),

R&D base development,

Operation experience exchange

Technical Solution

ROSATOM

Integrated

Solution

for

Modern design

Construction and life cycle management support (fuel, services, modernization)

Operation & maintenance

Industrial Solution

Equipment manufacturing, service & works localization,

Technology transfer,

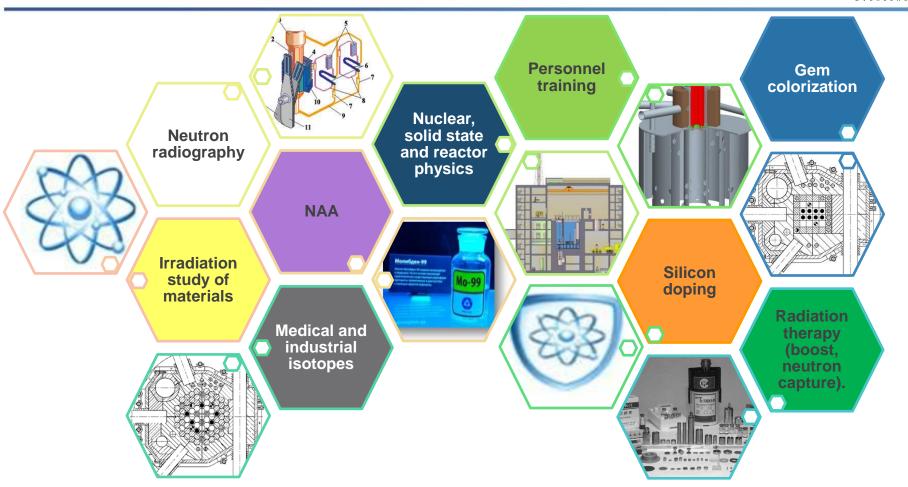
Certification of local suppliers, participation in Rosatom third countries projects

Financial Solution

Project finance structuring

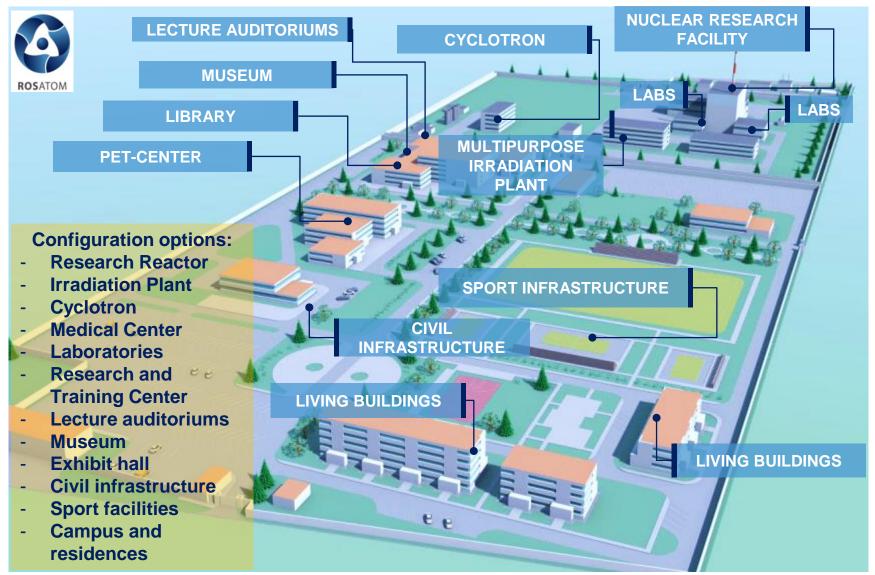
State credits

Partnership schemes


SAFETY

- basic principle

IDENTIFICATION OF POTENTIAL CUSTOMERS



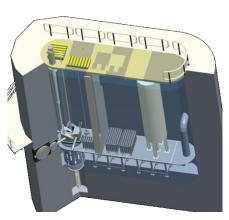
Customers and their needs are important to be identified to elaborate a sound and efficient technical proposal: training/science vs. training/science/business

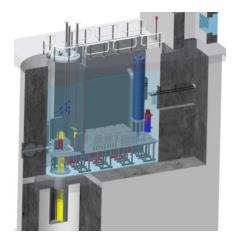
OPTIONAL CONFIGURATIONS FOR CENTERS OF NUCLEAR SCIENCE AND TECHNOLOGIES

TECHNICAL SOLUTION: RESEARCH REACTORS CAPACITY

RANGE

up to ≈ 1 MW


TRAINING RESEARCH REACTOR


≈ 10 MW

ADVANCED
MULTIPURPOSE
RESEARCH
REACTOR

CAPACITY RANGE KEY CHARACTERISTICS

Key features of research reactors	up to 1 MW 10 MW		20 MW		
Fuel assembly type	VVR-M2	IRT-4M	VVR-KN	IRT-4M	VVR-KN
Fuel assembly number	70	16	26	40	45
Fuel enrichment, U235, %	19,7				
Maximum thermal neutron flux, x10 ¹⁴ 1/cm ² s: in the core in Be reflector	0.45 0.22	3.2 2	3.3 2	> 4.1 > 1.4	> 4.6 > 1.2
Reactor service life, years	50				
Coolant	Demineralized water				
Reflector	Beryllium				
The part part part part part part part part	TRAINING RESEARCH REACTOR	BASIC MULTIPURPOSE RESEARCH REACTOR		ADVANCED MULTIPURPOSE RESEARCH REACTOR	

REACTOR LABORATORIES AND TECHNOLOGIES

Laboratories	Experiments	1 MWt	10 MWt	> 10 MWt	
Neutron Activation Analysis (NAA) Lab	Neutron Activation Analysis (NAA)		+	+	+
	NAA by Instant Gamma Radiation		-	+	+
	Age Determination by Argone	Age Determination	-	+	+
	Fission Trace	Age Determination	-	+	+
Radioisotope Lab	Boron Neutron Catching Therapy		+	+	+
	Positron Source		-	+	+
	Isotope Production		-	+	+
Material Centre	I&C Testing and Calibration		+	+	+
	Mater	-	+	+	
Irradiation Center	Silicon Doping		-	+	+
	Gamma Irradiation	Transmutation Effects	-	+	+
	Gemstone Coloring	2110000	-	+	+
	Neutron Tomography		-	+	+
	Neutron Diffraction Analyses	Testing	-	+	+
	Fuel		-	-	+

MULTIPURPOSE IRRADIATION CENTERS

Center of Irradiation – commercial industrial facility which provides irradiation services by means ionizing radiation.

Irradiator

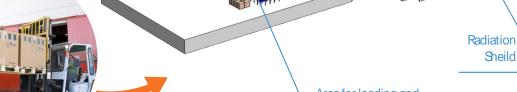
Radiation Treatment:

- Used in more than 50 countries
- Environmentally safe
- High productivity and efficiency of the process
- Increase of the trade between countries due to the strict requirements of countries-importers to the products quality

 Conveying transport system

Storage and shipment of goods

- Products shipment to the warehouse for a short – or long-term storage, depending on the the contract terms
- Loading products in vehicles directly from the warehouse


Radiation treatment of goods on the gamma-ray

unit or electron accelerator

Main fields of application:

- Sterilization of medical goods
- Food decontamination of food

Modification of materials

Delivery of goods

Area for loading and unloading of goods

- Automated process of loading goods on the conveyor
- Delivery of goods to the zone of irradiation
- Automated unloading of goods

CENTER OF NUCLEAR MEDICINE

Medical infrastructure

Diagnostic facilities: 3 variants of units

- -PET diagnostics department;
- -SPECT diagnostics department;
- -Complex radionuclide diagnostics solution, including cyclotron and radiochemistry facility, PET/CT, SPECT and SPECT/CT.

Therapeutic facilities

- -Interstitial and endocavitary radiation therapy department equipped with «Agat–VT» brachytherapy system;
- -Radionuclide therapy department (use of radiopharmaceuticals with iodine-131, samarium-153 and strontium-89).

Complex solutions for GMP radiopharmaceuticals (RF) production

- -Cyclotron-based PET RF production;
- -Reactor-based RF production.

RADIOPHARMACEUTICALS PRODUCTION ON

MCC-30/15 CYCLOTRON

Radiopharmaceuticals facility can be set up on the basis of on the medium energy MCC-30/15 cyclotron (30 MeV).

One of the possible configuration provides the country medical unites with PET and SPECT and therapy radiopharmaceuticals with: ²²Na, ³⁸K, ⁵⁷Co, ⁶⁷Ga, ⁶⁸Ge, ⁷³Se, ⁷⁵⁻⁷⁷Br, ⁸¹Rb (⁸¹Kr), ¹¹¹In, ¹²³I, ²⁰¹TI, ²²⁵Ac, ¹⁸F, ¹¹C, ¹⁵O, ¹³N.

The last four are assigned especially for PET pharmaceuticals.

There are configurations on the base of other cyclotrons of less energy: CC18/9M and CC-12.

RESEARCH REACTORS LIFECYCLE SUPPORT BY ROSATOM

Research reactor integrated into Centers of Nuclear Science and Technologies

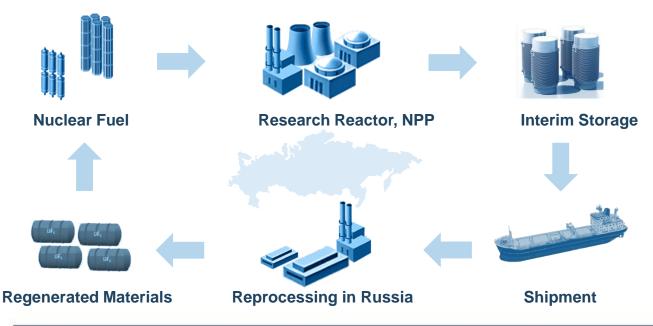
- Nuclear Infrastructure and Regulation
- Design, Engineering and Construction
- Training and Education
- Service and Maintenance
- Fuel and Radioactive Sources supply
- Radioactive Waste and Spent Fuel Management
- Decommissioning

Continuous full lifecycle support from Rosatom

ROSATOM INTEGRATED NFC SOLUTIONS

Usual Nuclear Fuel Cycle supply approach

Nuclear Fuel

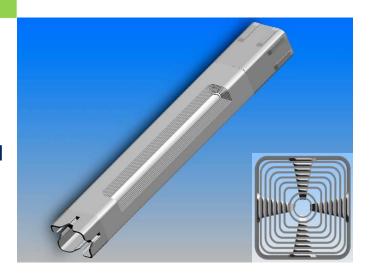

Research Reactor, NPP

Issues for the Customer

- Wet short-time SNF storage or dry long-time one?
- · Reprocessing or final disposal?
- How and where to pack RW?
- How to ship the SNF?
- What should be the mode of decommissioning?
- What to do with reprocessed U and Pu?

Rosatom Integrated Nuclear Fuel Cycle proposal

ROSATOM FUEL FOR RESEARCH REACTORS: LIFETIME FUEL SUPPLY GUARANTEE


NF for research reactors: Russian design

- Design & Fabrication of nuclear fuel for reactors in Russia
- For overseas research reactors of Russian design (8 countries) fuel assemblies with enrichment in U235 < 20%
- Participation in RERTR Program (conversion of research reactors using HEU fuel to LEU, U235 < 20%)

NF for research reactors: foreign design

- Fabrication of MTR fuel assemblies with plate-type fuel elements for research reactors of the Western design
- P20 fuel assemblies manufactured at NCCP by extrusion technology. NCCP qualification was completed in 2014

Fuel assemblies are delivered to customers in transport casks complying with IAEA regulations by all modes of transport including air

RESEARCH REACTOR MODERNIZATION & UPGRADES

Key Services for RR Upgrades

Ageing management / Lifetime extension

Capacity Increase

New functional facilities

Key equipment replacements: neutron sources, reflectors, etc.

Core modernization for alternative fuel supplies

IBR-2M research reactor (2011) is an upgraded IBR-2 fast pulsed reactor reactor (1984) with movable reflector and record high thermal neutron flux of 10^{16} cm⁻²·s⁻¹

Restart after modernization on February 11, 2011

BOLIVIA – CENTRO DE INVESTIGACIÓN Y DESARROLLO EN TECNOLOGÍA NUCLEAR (CIDETEN)

El Alto, Bolivia

- <u>Legal basis</u> Intergovernmental Agreement (signed March 6, 2016)
- First RR at 4100 m altitude
- Nuclear Research Reactor (up to 200 κW)
- Multipurpose Irradiation Center
- Cyclotron
- Scientific and human capacity development labs
- Engineering complexes and systems
- Social and educational facilities

Thank you!