

RUSSIAN FEDERAL NUCLEAR CENTER- ALL-RUSSIAN RESEARCH INSTITUTE OF EXPERIMENTAL PHYSICS (<u>RFNC-VNIIEF</u>)

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР ВНИИЭФ

Modeling Services: «From simulation to optimization»

The chief of scientifically-Research laboratory Oleg Kovalenko

Why modeling and optimization are necessary?

MODELING GOALS:

- Understanding of the object internal nature;
- An event forecast;
- System optimization;
- Statement proofs.

Conclusion:

- All purposes of modeling are directed on performance of decision-making;
- The head purpose of modeling is improvement of quality of decision-making.
 - 2

Why is poor quality of decisions accepted by the person?

Reasons of low efficiency of decisions (without modeling):

- 1 Underestimation and erratic perception of effects of feedback and delay;
- 2 Simplification of a reality and selective usage of the information;
- 3 Time limitation of decision-making process;

4 Uncertainty and complexity of environment.

Conclusion:

- 1. The dynamic system complexity increase sharply reduces efficiency of decision-making and its quality.
- 2. The person always makes the decision on the basis of own intellectual **models** of a real system based on the linear dependences.
- 3. In process of complication of system and time reduction of decision-making they become reactive and chaotic.
- 4. The effect of training is reduced to increase of velocity of decision-making, but raises their efficiency a little.

Super Computer Applications

The head purpose: Improvement of quality of decision-making (Remained)

Super COMPUTER Modelling Advantages:

Allows to raise essentially computing complexity of modelling (reduces computing time).

Consequence:

Allows to solve the problems which solution has been unattainable for a reasonable time **Remarks**:

- 1. Raise of computing complexity yet does not mean raise of accuracy of modeling.
- 2. Accuracy of modelling is attained by mathematical algorithm improvement.

Super computer modeling limitations:

- 1. It is required to higher qualification of programmers.
- 2. Complexity of mathematical algorithms raises.
- 3. The number of experts perceiving the task decision as a whole decreases.

Modeling Classification

Rough Landing SuperJet-100 (The Software Package LOGOS)

Validation

Simulation

Acceptance in maintenance SuperJet-100 without *full-scale experiments*

The Virtual Power Unit (SPBAEP)

Program-technical complex «The virtual power unit of the atomic power station

Modeling of all main systems of the power unit;

hand-hold courses of operation
technology of the nuclear power plant in various modes (on the basis of LNPP-2 project);

Result:

Improvement of professional skill of actions of operators of the atomic power station in regular and exception situations

Supercomputer technologies

Monte-Carlo Simulation of Operation of Ekaterinburg-Hump Station

Модель сортировочной станции г. Екатеринбург

Result

Bottlenecks of the station technology and the station net are

discovered

Automized System Based on the Optimization Modeling (AS "InfraPrognoz")

InfraPrognoz Calculation Visualization

Multicriteria Optimization

For the solution of problems of multicriteria optimization are used:

- CAD systems (SolidWorks, ProEngineer) modification of geometry;
- CAE system (LOGOS of development of VNIIEF) calculation of criterion functions;
- Optimizer (DAKOTA) calculation of optimum parameters.

3D Visualization Platform for a Simulation

Macro- language for Multiagent Modeling – Nested Petri Nets

Generation of the Markov Renewal EquationsPetri Net
$$\mathbf{V}(t) = \Psi(t) + \int_{0}^{t} \mathbf{Q}(\tau) \cdot \mathbf{V}(t-\tau) \cdot d\tau$$
 $\mathbf{V}(0) = \mathbf{I}$ $\mathbf{V}(0) = \mathbf{I}$ $\mathbf{P}^{T}(t) = \mathbf{P}^{T}(0)\mathbf{V}(t)$

- $\mathbf{V}(t)$ Conditional Transition Probability Matrix
- $\mathbf{Q}(t)$ Semimarkov Kernel
- $\mathbf{P}^{T}(t)$ Probability Vector to be in the States

Estimation of physical defense of the object (the variant 1 - 2 security guards)

Estimation of physical defense of the object (the variant 2 - 3 security guards)

Thanks !

References:

1. Каталевский, Д.Ю., Основы имитационного моделирования и системного анализа в управлении, 2015.

2. Alan R. Washbu, Moshe Kress, Combat Modeling, 2009.

RUSSIAN FEDERAL NUCLEAR CENTER – All-Russian Scientific Research Institute of Experimental Physics (RFNC-VNIIEF)