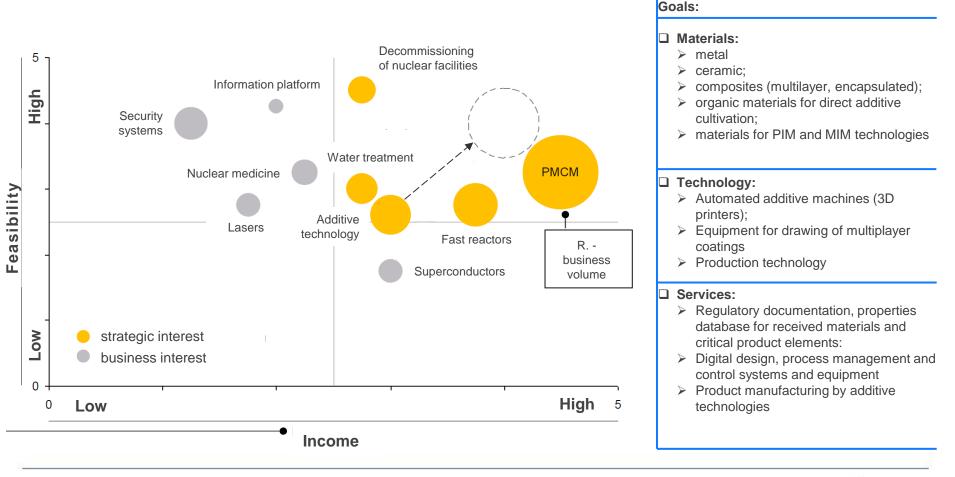


ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

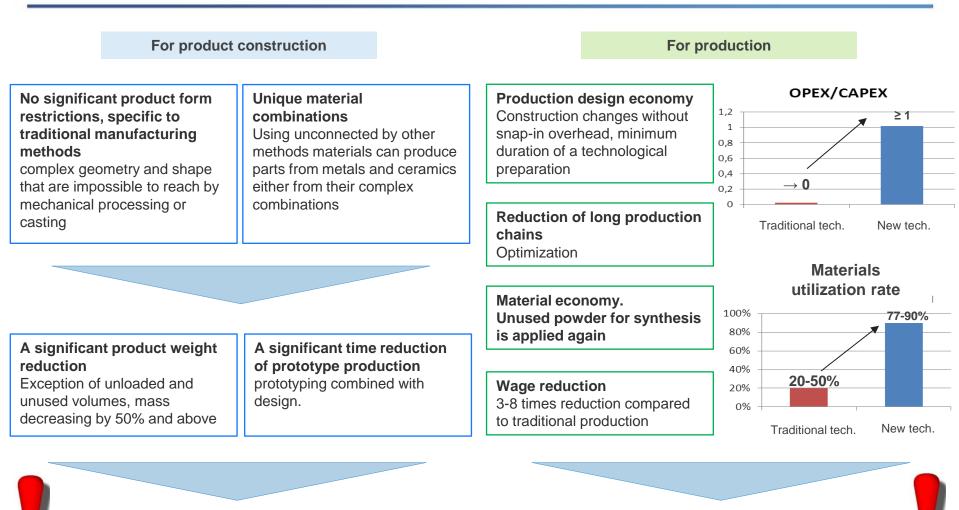
Аддитивные технологии как основа производства будущего. Создание оборудования для аддитивных технологий в ГК «Росатом».

Additive technologies as a basis for future production. Creating equipment for additive technologies in Rosatom.


А.В. Дуб

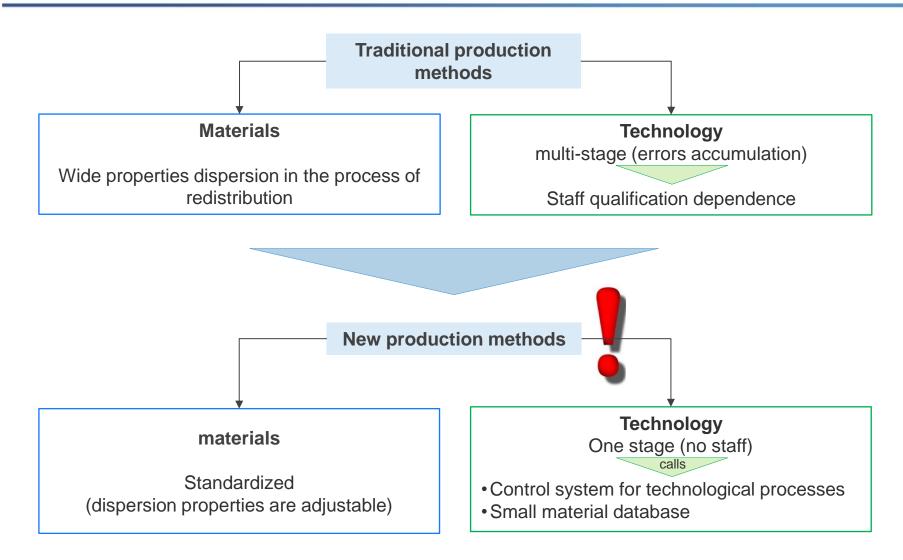
Москва, Атомэкспо 31 мая 2016 г.

Additive technology – strategic direction of development


Direction of development of additive technologies and manufacturing is among the promising strategic areas of scientific and technological activities of Rosatom* and the program of new production technologies development in Russian Federation**

• *Strategic direction approved at the meeting of the strategic Committee of Rosatom, 25.12.2015.

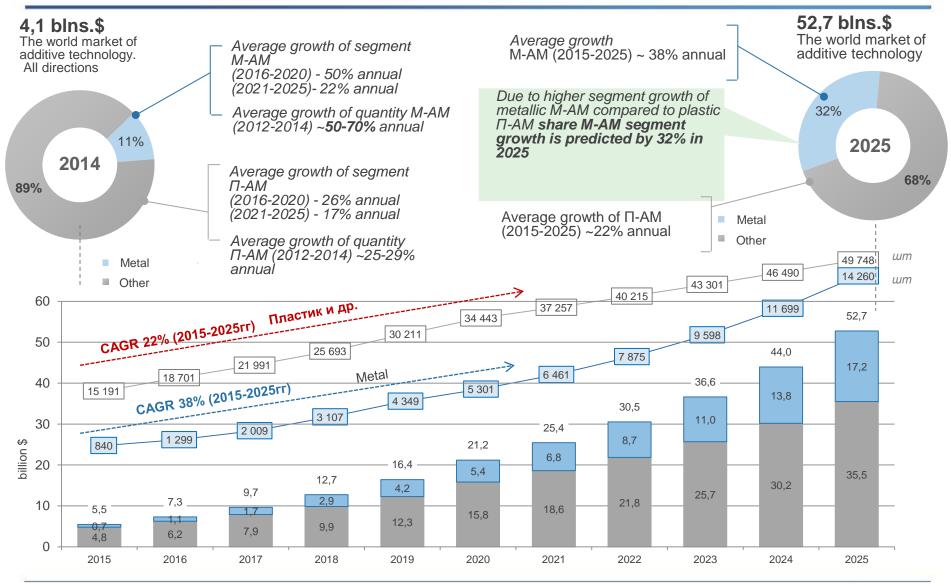
**Coordinated research and development program for the development of new industrial technologies (SPIiR PIT)


The development cycle of new products significantly reduced

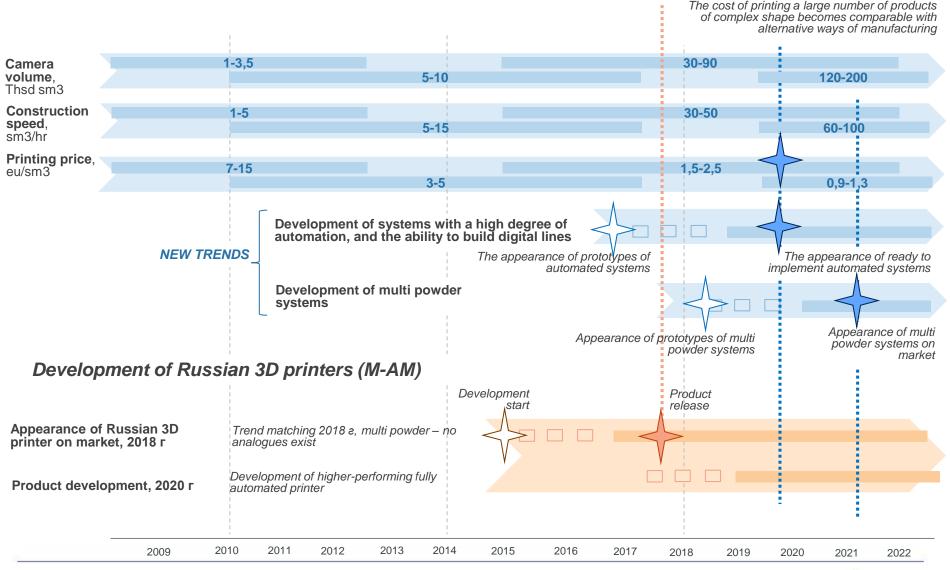
Product introduction cycle is significantly reduced

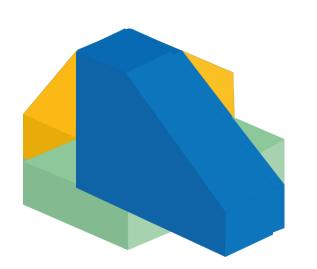
3

The advantages of using additive technology 2/2



Forecast world market development of additive technologies


(all types of 3D printers, 3D powder, services)


Trends in technological development *in the segment of metal additive machines (SLM)*

Source: agencies «Wohlers Report» 2015 Roland Berger Strategy consulting Report 2014

1. Materials 2. Technology – equipment, - modes, - management; 3. Design - database - testing - Standards and regulation 4. Resource product

	Characteristic	Key consumer requirements to products	
The most commonly used in	Sizes/ construction zones, (LxHxD), mm	Not less then 400x400x400	
the media, by experts	Construction speed (average), sm3/hr	More then 30	
	3D printer price*, mlns. rubs.	Not more then 70 mlns. rubs.	
The most commonly used requirements by 3D printers consumers	Types of metal powders used in complex	Basic characteristics - see.12, alloy composition according to GOST*	
	Build precision parts	Kvalitet 6-14 - GOST 25346	
	Surface roughness, not worse	Ra 40	
	Printer manufacturer, provided the customer supply of metal powders on value at 20% below their foreign counterparts	Yes	
	Manufacturer of 3D printers, assisted in the introduction of 3D technology to the Customer	Yes	
	Working with the two powders together (in one Detail)	Yes	
Additional requirements for commercialization	The ability to automate 3D printer and embedding in automated lines	Yes	
	Cost of ownership for 3D-printer, % annual from the value of the 3D printer	Less then 10%	
	The cost of printing products, rub/cm3	Less then 200	
	The repeatability characteristics of the printed products in a shipment, the percentage of deviation	Less then 1%	

*steel grades 14X17H2 ГОСТ 5632-79, 30XГСА ГОСТ 4543-71; - Ti and its alloys BT1-0 ГОСТ 19807-91, BT6 ГОСТ 19807-91; - Ni base alloys XH62BMЮТ (ЭП-708 ВД) ТУ14-1-1018-98, ЭП-718 ТУ 1-809-823-99; - Al base alloys AK12 ГОСТ 1583-93, АК9ч ГОСТ 1583-93.

Stakeholders and their basic requirements / values / expectations to the product / service

	The initiator of the projectл AO «УЭХК»	Developer (partner) «Science&Innovatio ns»	The State Ministry of education and science	Project participants (ООО «УЗГЦ», ООО «ЗЭП» и др.)	Consumers [customers]
Institutional solutions	 The presence of the greater part of production required to master output (circuit design, metalworking, etc.) Interested in creating new productions on site 	 Subsidiaries download in R&D projects Using existing competencies for one beam 3D printer 	 Subsidizes 215 million rubles for the development of 3D- printer Interested in import substitution of foreign producers 	 Loading of existing capacities(equipmen t, personnel) The creation of new manufactures 	 Wary of imposing a ban on the purchase of a 3D due to the sanctions Interested in buying at lower cost Needed in service
Commercial solutions	 Confirmed the need for 3D in ДЯОК and related industries. The probability of occupation of a substantial market share in Russia-more than 50% (the market is just being formed). 	 Commercialization of scientific competences of subsidiaries. Possibility to attract for future R&D projects 	 Interested in mastering the production of Industrial partner Sales of 3D printers to Russian enterprises 	 Obtaining of additional revenues and profits from the production materials and components 	 The economic benefits of the application of 3D technologies by reducing production time, material usage, etc.)
Technical solutions	 Mastering the production of high-tech products corresponding to the best foreign analogues 	 Opportunity to develop 3D printer, not inferior to import analogues 	 Development of Russian 3D printer corresponds to future market requirements 	 Availability of competencies and experience, production technologies of materials and components for 3D 	 Creation of functional parts with improved/new features (small weight, high complexity, etc.)

-Existing competitive advantages

-To strengthen to create additional competitive advantages

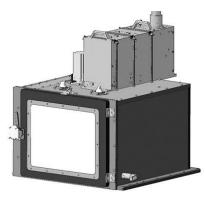
Main product groups (metallic additive machines (M-AM)

	MARKET TRENDS		%	
ductivity Single-beam 3D printers with lower-powered laser (less than 400 W), small area build (no more than 1 thousand/cm3) and low speed (5-10 cm ³ /h or less)	manufacturing of details for		1.6	32%) 1.1
	Correspond to trends of 2014 year	2014	2018	2023
ductivity	Construction speed, sm3/hr	10	40	80
Multi-beam 3D printers (2-4 laser) (-2 0.4 kW or more) big build area (over 25 thousand/cm3 and build speed	Energy costs in euro/kg	89	70	30
	Post-processing, men/h/kg	1,52	1,05	0,96
	The cost of manufacturing details, euro/cm3	3,1	1,6	1,1
			\wedge	
	Correspond to trends of 2018 year			
 multibeam (2 beam, one part r powerful, high-performance las build a large area (80 thousan SM3/h) 	makes contour, second melts layer) sers (400 Watts and 1000 Watts) d cubic centimeters) high speed (more than	43 Grand Fully	ers to high-pro corresponds ds of product	oductivity M- with the developmen
	Single-beam 3D printers with lower-powered laser (less than 400 W), small area build (no more than 1 thousand/cm3) and low speed (5-10 cm³/h or less) ductivity Multi-beam 3D printers (2-4 laser) (-2 0.4 kW or more) big build area (over 25 thousand/cm3 and build speed over 20 SM3/h) Developed the printer will have th - multibeam (2 beam, one part r - powerful, high-performance la - build a large area (80 thousan SM3/h)	ductivity Single-beam 3D printers with lower-powered laser (less than 400 W), small area build (no more than 1 thousand/cm3) and low speed (5-10 cm³/h or less) source: Roland Berger Strategy consulting Report 2014 Multi-beam 3D printers (2-4 laser) (-2 0.4 kW or more) big build area (over 25 thousand/cm3 and build speed over 20 SM3/h) Correspond to trends of 2014 year Correspond to trends of 2014 year Construction speed, sm3/hr Energy costs in euro/kg Post-processing, men/h/kg The cost of manufacturing details, euro/cm3 The cost of manufacturing details, euro/cm3 Developed the printer will have the following characteristics: Correspond to trends of 2018 year Developed the printer will have the following characteristics: multibeam (2 beam, one part makes contour, second melts layer) powerful, high-performance lasers (400 Watts and 1000 Watts) build a large area (80 thousand cubic centimeters) high speed (more thar	ductivity 3.1 Single-beam 3D printers with lower-powered laser (less than 400 W), small area build (no more than 1 thousand/cm3) and low speed (5-10 cm³/h or less) source: Roland Berger Strategy consulting Report 2014 Correspond to trends of 2014 year 2014 Correspond to trends of 2014 year 2014 Construction speed, sm3/hr 10 Energy costs in euro/kg 89 Post-processing, men/h/kg 1,52 The cost of manufacturing details, euro/cm3 3,1 Correspond to trends of 2018 year 2014 Developed the printer will have the following characteristics: 3,1 multibeam (2 beam, one part makes contour, second melts layer) 3,1 powerful, high-performance lasers (400 Watts and 1000 Watts) Refer build a large area (80 thousand cubic centimeters) high speed (more than 43 SM3/h) Refer	ductivity 3.1 Single-beam 3D printers with lower-powered laser (less than 400 W), small area build (no more than 1 thousand/cm3) and low speed (5-10 cm³/h or less) source: Roland Berger Strategy consulting Report 2014 Correspond to trends of 2014 year 2014 Correspond to trends of 2014 year 2014 Correspond to trends of 2014 year 2014 Multi-beam 3D printers (2-4 laser) (-2 0.4 kW or more) big build area (over 25 thousand/cm3 and build speed over 20 SM3/h) Construction speed, sm3/hr 10 40 Energy costs in euro/kg 89 70 Post-processing, men/h/kg 1,52 1,05 The cost of manufacturing details, euro/cm3 3,1 1,6 Correspond to trends of 2018 year Correspond to trends of 2018 year Developed 3D printer AM. Developed the printer will have the following characteristics: - multibeam (2 beam, one part makes contour, second melts layer) - powerful, high-performance lasers (400 Watts and 1000 Watts) Peveloped 3D printer AM. • build a large area (80 thousand cubic centimeters) high speed (more than 43 SM3/h) I fully corresponds trends of product directions for the driver time for the driver time for the product

	SLM 500HL	EOS M400	X line 1000R	MeltMaster -550
Max size of construction , mm	500×280×325	400×400×400	630×400×500	550×450×450
Laser Amount /output kWt / type	2×0,4 (2×1,0) Itterby, fiber	1 / 1 / Itterby, fiber	1 / 1 / Itterby, fiber	1 / 1 / Itterby, fiber
Construction speed, r	до 70	-	10-100	15-100
Layer thickness, mkm	20-200	_	30-200	20-250
Focus diameter, mkm	80-150/700	90	-	50-700
Scanning speed, m/s	до 15	7,0		до 15

Printer MeltMaster3D-550

MeltMaster^{3D}-550 without of external shell


MeltMaster^{3D}-550

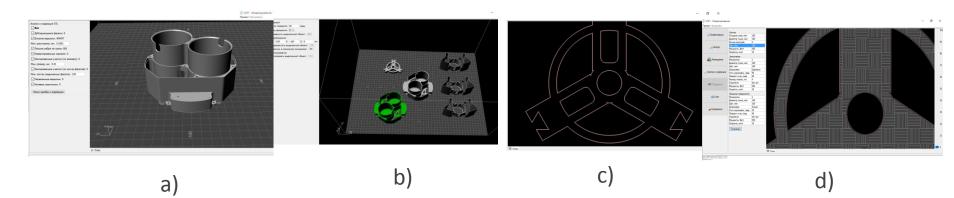
Main parts of equipment:

- 1.Working cell;
- 2. Supplement of powder materials system
- 3. Powder Recirculation system
- 4.Gas protection system;
- 5. Automatic control system.

Horizontal modulo structure was used for creation the equipment.

Рабочая камера

MeltMaster3D-550



Equipment can used different metal powder:

- 1. Particle size– 20-40 mkm
- 2. Particle shape– spheroid

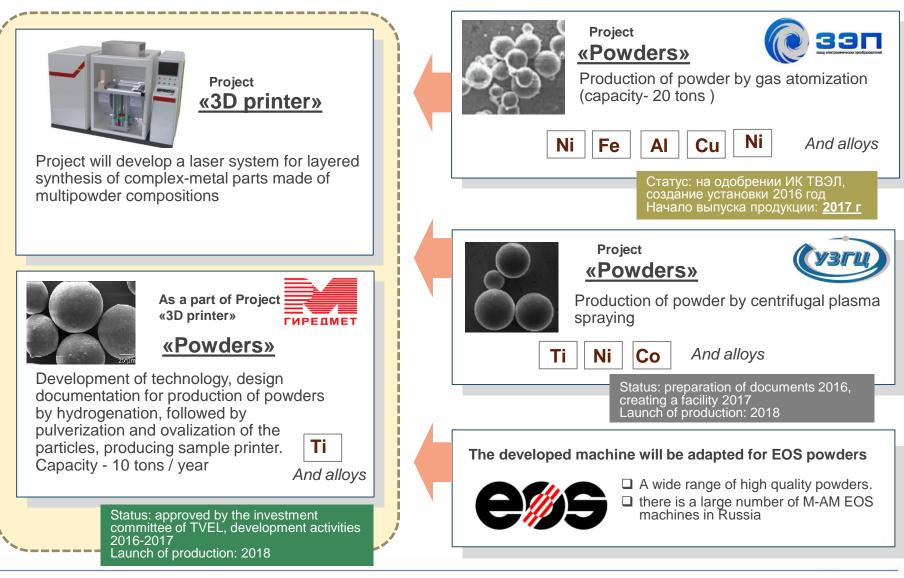
2 special software product were created for MeltMaster^{3D}-550 technological processes «SLM-Modelling» & «SLM-Production».

Examples of interface a) – checking of 3D-model; δ) – positioning of the potential product at the working cell; B) – slicing the layers; Γ) – visualization of each layer

Simulation modelling of alloying technologies

- ✓ transfer of radiation in order to calculate distribution of thermal energy allocation between the layers of powder and substrate
- ✓ heat transfer with phase transitions
- ✓ mass transfer in melt powder

✓ heat and mass transfer for modeling the distribution of alloying elements, shape of molten pool

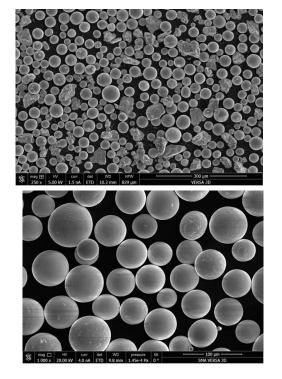

- heat and mass transfer during the cooling, crystallization process analysis in order to predict mechanical properties of the product
- ✓ optimization (prediction of optimum SLM-condition)

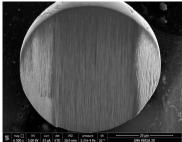
"Virtual 3D printer"-

multiscale mathematical system with feedback and adaptive control for SLM technology, linking together such concepts as process, structure, properties for created products and integrated with the CAD tools

Metal powders for 3D printer

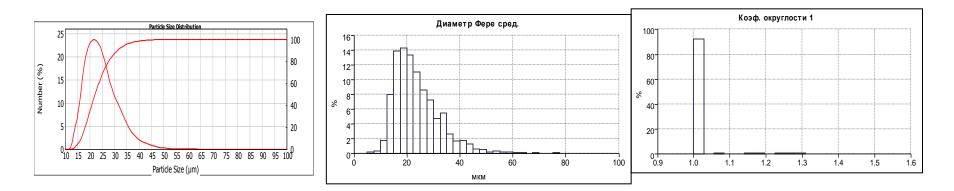
Powder production

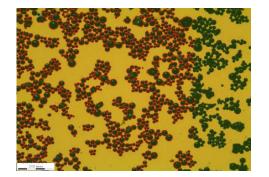


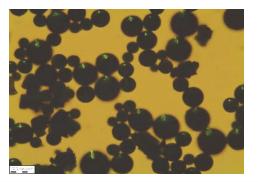


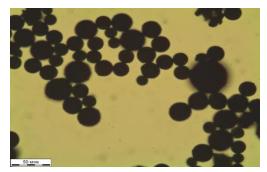
Plasma spheroidisation equipment.

Powder

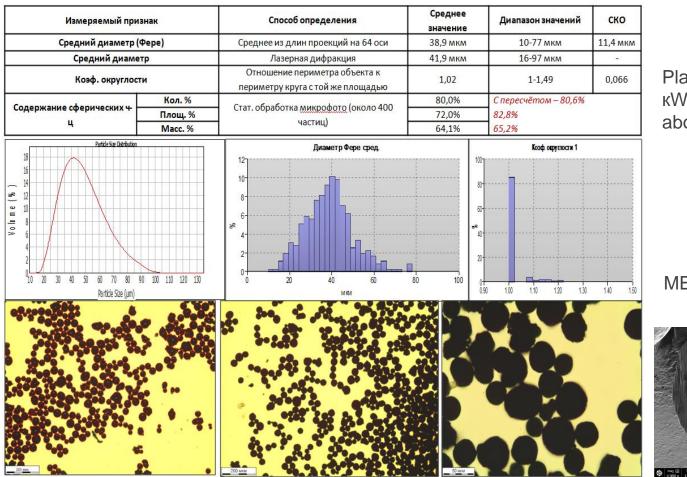


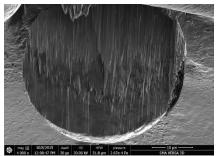

Experimental amount of spheroid Ti powder BT1-00 and BT-6 were produced. Size ~10-40 mkm.


No porosity

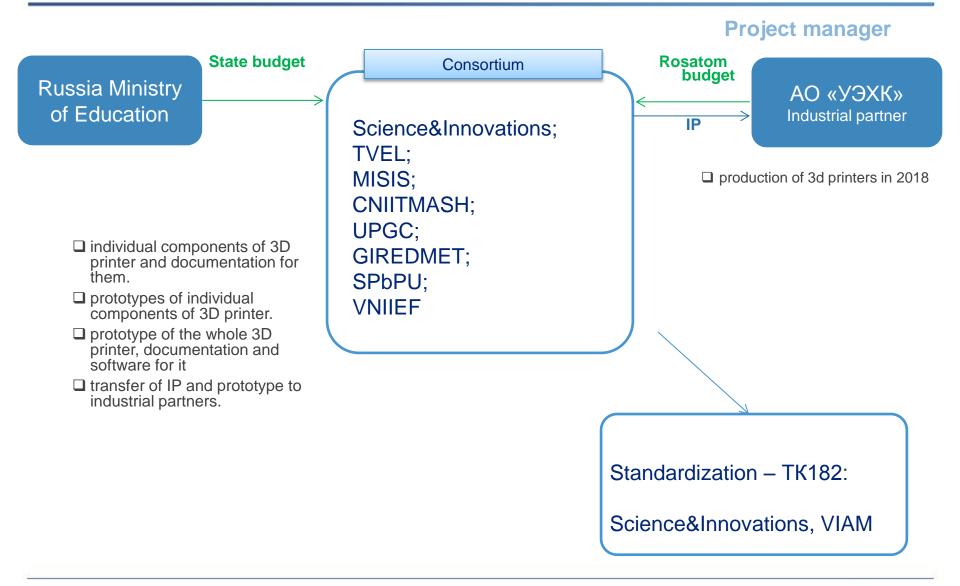


Size distribution analyses. Ti –spheroid powder external view.





Size distribution analyses. 12X18H10T (316) –spheroid powder external view.



Plasma Entalphy 2,2-3,8 κWt/M³ creates overage size about 41,9 mkm.

MEB picture - no porosity

- Создан консорциум участников (отраслевые/ не отраслевые);
- > программа реализуется по графику;
- > организованы работы по разработке нормативной документации.
- A consortium of participants was created (in&outside of Rosatom);
- It the program is implemented in accordance with the schedule;
- > development of national standard was organized.