

Renewables as a prospective cornerstone of the future energy mix

Key theses for the report at the round table "Energy mix optimization. Nuclear & RES"

In the future RES will be capable of covering base load and/or semipeak load demand by becoming more intelligent & more competitive

Key theses

- Significant installed capacities of renewables globally, incl. specific countries where they are comparable with base load demand; expected CAPEX of EUR 7.5 trillion in 2015-2040
- 2 **Further decrease of LCoE**¹⁾ **of renewables** due to massive scientific & technical progress (technologies, manufacturing processes, construction techniques)
- **3** Further increase of technical availability and applicability of RES due to advancements in electricity storage technologies, fleet footprint approaches, as well as large-scale introduction of Demand Side Management & energy efficiency instruments
- **4 Further increase of investments into RES from non-energy players** due to the industry's decreasing dependency on state regulation / incentive schemes
- **5 Possible shift in the energy system paradigm** transition from "RES as a peak load capacity" to "RES as a basis of the energy mix"

1) Levelized Cost Of Electricity

For example, solar PV can reach 12% of EU power-gen capacity by 2025, exceeding baseload demand in some European countries

Renewables share in Europe – Example of solar power

1) Scenario B of ENTSO system adequacy report; UK data taken from the slow progress scenario in the National Grid Future Energy report

Source: ENTSOE; National Grid; Roland Berger

Expansion of renewables in Europe led to significant cost decreases over time – LCoE of onshore wind & PV close to cost competitiveness

Levelized cost of electricity in Europe, 2014 [EUR ct/kWh]

Renewables

- > Gap between renewables and conventional generation technologies is decreasing
- > Wind onshore already today cost competitive with hard coal and natural gas (although wind onshore LCoE highly dependent on location)
- > Due to technological advance and increasing experience further reduction in LCoE particularly in wind onshore and PV expected

Example of advancements in offshore wind – new foundation concepts, where the trend towards deeper water is shifting growth to jackets

Technological advancements – Example of offshore wind

Foundation		Realized up to 2015	Outlook	Comments
Gravity based foundations (GBF)		20%	0	Depth < 20 meters; less used recently, mostly in shallow water; new GBF concepts under development for depths of 20-40 meters
Monopile		75%	\bigcirc	Depth 10-30 meters; remains most important foundation type, may lose some ground to other concepts, but new concepts likely to succeed
Tripile	Щ	1%	\bigcirc	Depth 25-50 meters; developed by BARD; large-scale further application unlikely due to high complexity and material needs
Tripod	A	< 1%	\bigcirc	Depth 25-50 meters; developed by Areva; large-scale further application unlikely due to high complexity and material needs
Jacket		2%		Depth 20-60 meters; expected to gain market share due to great flexibility and low weight (40-50% less steel than monopiles); commercially viable at depths of > 30 meters
Floating	Ą	< 1%	?	Depth > 50 meters; currently at R&D stage; significant growth potential, especially for countries with steep shores; no large scale commercial application expected before 2020

WATER DEPTH

Example of advancements in solar PV – new technologies that increase the range of application and the conversion efficiency

Technological advancements – Example of solar power

Developments in solar cells/panels

Developments

- > Multi-junction cells: organic, organometallic, inorganic mat.
- > Perovskite combined with silicon
- > **Dye-sensitized** solar cells (DSSCs)
- > Photon upconversion or downconversion

New applications

Developments

- > BIPV: PV materials incorporated into the construction of new buildings
- > Integration of solar installations with battery storage
- > Solar micro-inverters attached to each solar panel
- > Demand-side management by analysis of consumption profile

Impact on installations

- For installation of panels, no material differences in the type of solar cells/modules is present
- Higher efficiency increases the range of application of solar PV

Impact on installations

> More complex installation of

system and connection to

> More complex operations of

the solar PV systems

> Increased need for

maintenance

the grid

Solar PV efficiency evolution with new materials

Solar cells materials evolution:

- > 1st gen. : crystalline silicon, incl. polysilicon and monocrystalline silicon
- > 2nd gen. : thin film solar cells, incl. amorphous silicon, CdTe and CIGS cells
- > 3rd gen.: thin-film technologies, incl. organic materials, organometallic compounds as well as inorganic substances

Nowadays several proven electricity storage technologies exist with high capacity and long discharging times

Electrical storage

Storage technologies – Discharging time / Capacity

Electrochemical storage

- > Pumped storage, CAES and hydrogento-methane storage represent the only technologies with high capacity and long discharging times
- > Batteries already have storage capacities of several megawatts and are ideal for backup power system support
- > Flow batteries have the potential to further increase discharging times
- > Direct electrical storage with capacitors or superconducting coils can be realized only with small capacities and with very short discharging times

Source: BWK, Energiewirtschaftliche Tagesfragen, Pike Research, Roland Berger

Mechanical storage

Demand Side Management helps tackle utilities' real-time imbalances from intermittent renewables and reduce industrials' energy bills

Demand Side Management – Overview

Utilities are moving into new decentralized business models extending their portfolio vertically and beyond industry boundaries

Traditional								Hig	gn I	evel of innovation
Power/ gas only		Auxiliary energy products	+	Vertical portfolio e	extens	sion		New industrie Energy and IT Integration	-	ulti-service
Selected examples	>	Sustainable energy products – low-carbon, renewables Advanced customer info – consumption reports, real-time load info Decentralized power generation	>	Boiler and heating devices – sale, installation, periodic revision, repair Home appliances – in-house repairs Energy-saving products (from light- bulbs to solar panels, >1000 SKUs)		Energy efficiency – audit, home insulation, energy data management solutions	-	Smart metering	>	Insurance – from repairs to full home insurance Financial services Automotive - supplying & operating an e- mobility network

Renewables are no longer a CSR initiative, as they increasingly attract funds of non-energy players and oil & gas majors

Examples of corporate investments / initiatives in the area of wind & solar power

Wind		Solar				
bp 🗱	Owns 16 onshore wind farms in US of 2.6 GWe capacity		Agreed in May 2016 on the acquisition of a battery producer Saft worth USD 1.1 bn, following the '2011 acquisition of a PV producer SunPower			
Google	Signed power purchase agreements (PPAs) for > 2 GWe of wind power in US;	ΤΟΤΑL				
	100% renewable energy goal by 2025 (from 37% now); Google X invests in wind energy kites (unit capacity of up to 600 KWe)	Walmart >¦ <	Installed > 100 MWe of solar panels on roofs of > 300 its stores and distribution centers (6% of the company's locations), with a plan to double the capacity by			
MARS	Partnered with Sumitomo on a 200 MWe wind farm, which covers 100% of its power needs in US (25% globally)		2020 Started selling solar panels in its UK shops (in partnership with SolarCentury)			
	As part of its CO_2 -neutral mobility strategy, co-financed an offshore wind farm in the North Sea which power its power-to-methane plant opened in 2013					

Future energy systems may have no baseload, with solar & wind covering major demand, and (CC)GTs flexibly covering the remainder

Future shift in the energy system's paradigm – Example of Germany

Thank you!

Denis Borisov

Project Manager

Competence Centers "Energy & Chemicals" and "Infrastructure"

Tel. +7 495 225 76 45 Mob. +7 967 268 10 92 <u>Denis.Borisov@rolandberger.com</u> 127051, Moscow, Tsvetnoy Bulvar, 2

Roland Berger

